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Abstract

Male labor force participation in developed economies has ubiquitously declined

since the 1970s. This paper shows that concurrent global warming fueled dropouts of

prime-aged adult males by harming their traditional advantage of working outdoors.

Exploiting climate change variation across U.S. commuting zones, constructed from

granular weather station records, I find that 10 more annual hot days (above 75◦F )

hurt labor force participation rate (LFPR) of prime-aged males by 0.3 percentage points

during 1970-2019, more saliently for less-educated. In the new century, climate change

accounted for 17% of the nationwide LFPR decline for non-college graduates. The effect

of hot days is critically shaped by regional dependency on outdoor jobs. Climate change

both hurt employment-to-population ratio and wages of outdoor workers, with limited

transfer to indoor sector. I also find that the LFPR decline was partially induced by

the labor supply side, fueled by the spread of residential amenity (e.g., air conditioners

and colored TV sets) in the late 20th century. Collectively, the findings suggest that

climate change exacerbates socio-economic inequality.
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1 Introduction

The globe has become and will be a hotter planet. Climate science established that a global

temperature trended up around the 1970s1. The warming further accelerated in the 21st

century, currently ends up being called as global boiling (Guterres, 2023)2. Climate scientists

and economists have traditionally explored the climate impact on ecosystem and agricultural

production at outdoor fields (e.g., Mendelsohn, Nordhaus and Shaw (1994); Deschênes and

Greenstone (2007)) and countermeasures to cut CO2 emissions, however, surprisingly little is

known about how climate change affects behavioral responses of people in the labor market.

This paper proposes a novel hypothesis that modern global warming loomed up since

the 1970s contributed to a global decline in prime-aged male labor market participation

rate (LFPR below) in developed countries3. I empirically features the U.S.: until 1970, a

non-participation dropout rate4 for U.S. prime-aged (aged 25-54) males had been 2-4%, in

2019, however, the rate has consistently risen to an alarming height of 12%5, leading to

rising income inequality, morbidity and poor subjective well-being (Krueger (2017)). Only

consensus made in the long-standing debate is that a single dominant factors, both in demand

and supply sides, cannot explain for the long-run decline (See Abraham and Kearney (2020)

and Binder and Bound (2019) for a comprehensive survey)6.

To motivate my inquiry, Figure 1 illustrates the long-run nationwide trend of hot days

(with daily temperature exceeds 75◦F ) and LFPR of prime-aged males during 1950-2019.

As the number of hot days increased around 1970, one can see the parallel decline in LFPR.

(Figure 1)

1This temperature rise is unprecedented for two millennia since the dawn of 19th century industrialization.
See e.g., Masson-Delmotte et al. (2021), Intergovernmental Panel on Climate Change (IPCC).

2In July 2023, the United Nations Secretary-General, António Guterres announced that “The era of global
warming has ended. The era of global boiling has arrived.”

3See the cross-country phenomenon on LFPR drop, e.g., Grigoli, Koczan and Topalova (2020).
4I define a person as a dropout if he is not either employed (including self-employed), nor searching for

job (unemployed) and is not at school either.
5From U.S. Bureau of Labor Statistics. See a nationwide trend in the U.S. at Figure ??.
6Conventional explanations include technology (Autor, Levy and Murnane (2003); Acemoglu and Re-

strepo (2020)), free trade (Autor, Dorn and Hanson (2013)) and institutions (Autor and Duggan (2003)).
See related literature section for greater detail.
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Figure 1: Nationwide trend of annual hot days (left axis) and labor force participation rate
of prime-aged males (right axis; 1950-2019, U.S.)
Note: Nationwide hot days is a 5 year moving average of population-weighted average of exposure to hot days
across counties in the U.S. mainland. Station records on weathers from National Oceanic and Atmospheric
Administration (NOAA) are aggregated to county-level, weighted by annually interpolated county population
from historical census (1940-1970 by decades) and Surveillance Epidemiology and End Results, National
Cancer Institute (1970-2019, annually). A hot days has a mean temperature of 75◦F (23.9◦C) and a daily
weight to maximum temperature is ω = 0.75. Nationwide participation rate of prime-aged (25-54 years)
males are taken from U.S. Bureau of Labor Statistics.

To help bridge a seemingly independent coincidence, I document that consistently 30% of

prime-aged males have worked regularly outdoors since 1970, as identified by O*NET Work

Context Survey, typically in primary, construction and transportation sectors. Intriguingly,

over 75% of the outdoor workers have been consistently occupied by males. In parallel,

during a half century, 1970-2019, I compute that 5-year average hot days per year (daily

temperature above 75◦F ) experienced by an average U.S. resident increased by 29.5 days

(See Figure 1). Imagine a male working outdoors. Larger exposure to hot days would

physiologically augment labor costs of manual tasks while standing, walking and sweating,

and thus, suppress labor supply for outdoor jobs (discomfort effect). Intriguingly, since the
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1960s, residential air conditioners and colored TV sets penetrated at home and relative cost

of working outdoors vs. staying at home has expanded. Simultaneously, exposure to hot days

would hurt labor productivity (Somanathan et al. (2021); Chen and Yang (2019)), and thus,

shrink labor demand of outdoor jobs (productivity effect) by reallocation of labor, technical

change, or exits of businesses. As both forces reduce outdoor jobs, global warming would

nudge workers to get out of the market, even if he is unaware of climate change. In the age

of global boiling, the reasoning conjures up a cautionary tale of frogs in the boiled water7.

To assess the mechanism above, I build a balanced panel of exposure to climate change

associated with LFPR across 722 U.S. commuting zones during 1970-2019. Containing a

variety of climate zones, the continental U.S. provides an ideal testing ground for the climate-

labor nexus. I construct a more than half-century series of daily weathers (e.g., humidity;

precipitation; snowfall) of commuting zones from raw station records of nearly 15,000 U.S.

weather stations from the National Climatic Data Center (NCDC).

To measure a daily temperature, majority of the literature conventionally uses the mean

of daily maximum and minimum temperature. However, I show that the canonical measure

significantly underrates the temperature during prime labor hours. Combining hourly tem-

perature fluctuation from the separate U.S. Climate Normals dataset, I find that median

temperature during business hours (8 am - 6 pm) has been substantially higher by 6.9F, and

especially in the summer (July-September), by 9.0F compared to the conventional all hour

daily mean.

Connected with prime-aged male LFPR computed from the Population Census and Amer-

ican Community Survey, this near-exogenous treatment permits a natural experiment, after

controlling for extra climatological variables, demographics, health and wealth variables, re-

gional traits, industry structure and Census division trend in addition to commuting zone

and year fixed effects (See Dell, Jones and Olken (2014)).

The baseline results suggest that 10 more hot days (temperature >75◦F ) in decadal

7“If you throw a frog in a pot of boiling water, it will hop right out. But if you put that frog in a pot of
tepid water and slowly warm it, the frog doesn’t figure out what going on until it’s too late.” (Old proverb,
rephrased in Meyer (2008)) This tale cautions that people may react to an acute shock, but fall into inaction
under an incremental change.
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baselines shrink prime-aged male LFPR by 0.24 percentage points. Cold days (temperature

< 35◦F ) are also harmful, but with slightly less precision. The response is sharpest for less-

educated (aged 35 and below). During 1970-2019, increase of hot days net of effects from

decreased cold days depressed the nationwide LFPR by −0.108 p.p.. After 2000, however, the

climate impact expanded to −0.320 p.p. (12.4% of the nationwide drop in LFPR) with little

impacts from decreased cold days. Limiting to non-college graduates, the climate impacts

was 17.7% of the total, and the impact was largest in the Southeast and Northeast regions,

explaining 12.5% and 22.0% of the regional drop in LFPR, respectively.

I also find that climate change significantly reduced employment-to-population ratios of

outdoor workers, and raised an unemployment-to-population ratio. I interpret that less-

educated males working outdoors have less comparative advantage in indoor occupations,

which are supposedly more intensive in communication or analytical skills. With controlling

demographics, I find that extreme hot days hurt wages exclusively for outdoor workers.

Combined with decreased employment-to-population ratio of outdoor workers, the adverse

wage effect indicates that labor demand shrinkage is relatively at work to mask the supply-

side contraction.

It appears very challenging to detach labor supply contraction from labor demand, be-

cause rising discomfort under heat (thus, suppress labor supply) would mechanically hurt

labor productivity (thus, shrink labor demand). To directly isolate the labor supply re-

sponse, I run a pair of exercises. First, I test whether regional prevalence of residential

amenity (e.g., air conditioners and colored TV sets) magnified adverse climate impact on

LFPR. Residential amenity presumably increases relative cost of work (by upgrading leisure

utility at home) without harming labor productivity. Intriguingly, I find that prevalence of

residential air conditioners and TV sets significantly augmented climate damages in the late

prior century.8 Second, I directly test whether climate change eroded preference for work,

measured by repeated cross-sections of World Value Survey (WVS). Pairing interviewees’ lo-

cations (longitudes and latitudes in 2017)9 and regional climate change, I find that exposure

8The finding resonates with Aguiar et al. (2021), assessing the role of evolving video game technology to
augment leisure utility and depress labor supply of young males.

9In the latest 2017 wave, interview locations are available by longitudes and latitudes. In 2013, residence
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to hot days is associated with their lower willingness to work, expressed in nearly all work-

related questions. A respondent’s detail occupation is unavailable, however, the effect shows

up exclusively for prime-aged males, and more sharply for the less-educated. Collectively,

I conclude that the climate-induced dropout hypothesis operates both labor demand and

supply sides. Under the forecast of accelerating global warming and with lacking evidence of

adaptation, outdoor workplaces will further be a hotbed of dropouts to raise socio-economic

inequality.

Related Literature Traditional research on global warming is centered around climate

impact on agricultural productivity. First, and most significantly, the paper provides a new

climate perspective on the long-standing literature of declining males’ labor market attach-

ment. Literature largely attributed the declining attachment to shrinking labor demand for

non-colleged workers (See Juhn (1992); Acemoglu (2002); Card and DiNardo (2002)), later

exemplified by skill-biased technical change of computerization (Autor, Levy and Murnane

(2003)); skill-replacing technology of automation (Acemoglu and Restrepo (2020); Lerch

(2020); Grigoli, Koczan and Topalova (2020))); free trade (Autor, Dorn and Hanson (2013))

and offshoring (Harrison and McMillan (2011); Ebenstein et al. (2014)). On the labor

supply side, Krueger (2017) showed that physical and mental health is strongly worse in

non-participants.10 Highlighting the labor supply side, I feature a role of climate change to

raise the labor discomfort, potentially damage physical or mental health. The paper intro-

duces climate shocks across commuting zones——demonstrably a combination of regional

labor demand and supply shocks.

Second, and related to the climate’s impacts on health, this paper contributes to recent

studies uncovering climate impact on human behaviors and psyche, exemplified by negative

tweets (Baylis (2020)), increased suicides (Burke et al. (2018)) and violent crimes (Ranson

(2014)), which could also work both within and beyond labor markets. A labor supply

of a state is available. See Section 4 for greater detail.
10In 1960-1970s, the expansion of public benefits could be another factor to increase the opportunity cost of

labor. Parsons (1980) and Autor and Duggan (2003) showed expansion of Social Security disability insurance
benefits as a critical inhibitor for labor supply.

6



mechanism explored by my study shares a similar spirit with Graff Zivin and Neidell (2014).

Using time use diaries in American Time Use Survey, 2004-2006, Graff Zivin and Neidell

(2014) found that daily extreme weather shocks altered daily time allocation, by shrinking

labor hours or shifting outdoor leisure to indoor. To the best of my knowledge, my paper is

the first to associate climate change with modes of labor market attachment.

Third, my study complements burgeoning works uncovering declining labor productivity

at establishment levels. Using an employer-side survey, Somanathan et al. (2021) (in India)

and Zhang et al. (2018), Chen and Yang (2019) (in China), Cachon, Gallino and Olivares

(2012) (in U.S. automobile industry) showed that higher temperature hurt labor productiv-

ity.11In contrast to their focus on indoor manufacturing plants, many of which are not air

controlled, my study instead uses a population survey to feature individual labor supply and

highlights outdoor workers prevalent across sectors .

The paper is organized as follows. Section 2 presents the data and proxies used for

empirical analysis. The estimation results are provided in Section 3. Section 4 quantitatively

assesses climate impacts in the aggregate level and discusses other mechanisms and policy

implications. Section 5 concludes.

2 Data

To empirically isolate the climate impact, I assembled a newly constructed panel data of

climate exposure, labor market attachments together with regional socioeconomic and in-

dustrial correlates during a half century during 1970-201912. Along with Autor, Dorn and

Hanson (2013), Autor and Dorn (2013) and Acemoglu and Restrepo (2020), I use a com-

muting zone (or CZ) as a combination of multiple neighboring counties, Tolbert and Sizer

11In the field of engineering, a series of laboratory studies show that extreme temperature hurts the
productivity of office work (Seppanen, Fisk and Lei (2006)) and academic performance of kids (Wargocki
and Wyon (2007)).

12Outcome years include 1980, 1990, 2000, 2010, 2019, excluding 2020 as the onset of pandemic. pre-period
controls for each outcome period is 1970, 1980, 1990, 2000, 2010, respectively.
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(1996)).13Given cross-county commuting, commuting zones most likely contain both work-

places and commuting routes of each worker, serving as a unit of regional labor market.

2.1 Climate change

The weather station data is drawn from Global Historical Climatology Network Daily (GHCN-

daily) from the National Climatic Data Center (NCDC) of the National Oceanic and At-

mospheric Administration (NOAA). GHCN-Daily is an integrated database of daily climate

summaries from land surface stations and contains the most complete collection of US daily

climate summaries available under universal quality assurance checks. I use weather variables

of the daily d’s maximum and minimum temperature Tmax
d , Tmin

d , precipitation, snowfall and

dew points. Following the literature, I construct a daily temperature Td as a weighted average

of these two s.t. Td = ωTmax
d + (1−ω)Tmin

d where ω ∈ (0, 1). Majority of the literature uses

ω = 0.514, however, taking an arithmetic mean significantly underrates day time temperature

as shown below.

Climate meets labor markets To see this, I compute a monthly × weekly CZ-specific

ωweek,month,i to match the median temperature during the typical business hours including

commuting hours (8am-6pm), employing within-day hourly temperature fluctuation aver-

aged during 1980-2010 from alternative Climate Normals dataset (from National Centers for

Environmental Information).15 A seasonal distribution of ωweek,month,i is found to be sub-

stantial: a median ω is 0.8 in the summer vs. 0.68 in the winter. (Figure 2; left) Driven

by a strong seasonality of within-day temperature cycle, temperature in the labor market

are higher than the conventional daily mean with ω = 0.5, substantially underrating the

temperature exposed to outdoor workers during daytime. (Figure 2; right).

13To consistently measure LFPR since 1980, a commuting zone is a finest geography units publicly avail-
able. Only employment-to-population ratios are publicly available for counties by BLS.

14Alternatively, some literature adopts extreme weathers by using either maximum (e.g., Graff Zivin and
Neidell (2014)) or minimum temperature (e.g., Cook and Heyes (2020)). Overall, the literature is silent
at discussing an optimal weight of max and min temperature to compute a daily temperature (See my
computation of daily weight ω in Section 2.1).

15See Appendix for details. Instead of targeting Tmedian
d , using Tmean

d does not significantly change the
estimates. In the robustness check section, I shall test the robustness of the choice of ω.
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Figure 2: Distribution of daily temperature weight across seasons (left) and annual distri-
bution of temperature by weight choice (right)
Note: (left) A unit of observation is ωi,t, computed in weekly average among four weeks within each month,
constructed from station records by Climate Normals, 1980-2010. Each year is split to four seasons: Summer;
June, July and August. Fall; September, October and November. Winter; December, January and February.
Spring; March, April and May. (right) A unit of observation is a daily temperature averaged during 2011-
2019, allocated to each bin. ωi,t = 0.5 is an arithmetic mean of max and min temperature of Global Historical
Climatology Network Daily, while weekly ωi,t is set to fit median temperature during 8am-6pm using Climate
Normals. (See text for more details.)

To construct CZ-level climatological variables, I follow an inverse-distance weighted

method to aggregate each station-level data record (e.g., Barreca et al. (2016) and many

others) Limiting to weather stations with complete records in any given year, records from

closest 10 stations from each CZ population centroid16 is aggregated weighted with an inverse

of squared power of distance from the centroid.

Climate is typically characterized by a distribution of realized daily weathers. Proxying

climate change as 5-year prior average of annual number of hot and cold days, with median

daily business hour temperature cutoffs 75◦F and 35◦F , respectively, I document a dramati-

cally rich variation of climate change, both between and within nine NOAA climate regions,

16Population centroids at CZ-level are constructed as population-weighted averages of county-level popu-
lation centroid longitudes and latitudes available from the Census Bureau. (See Appendix for details)
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where some regions experienced even cooling17.

Initially hot regions (especially Southeast, South and Southwest) experienced the severest

warming and initially cold regions (Northeast, Northwest) experienced the mildest warming,

or even, cooling with decreased hot days.18 Notably, regional climate shocks are both con-

ceptually and geographically distinct from conventional labor demand shocks, including ICT

shocks (on indoor occupations with routine analytical tasks across sectors), globalization

(import competition) and automation (industrial robots primarily in manufacturing).

2.2 Labor supply and market outcomes

As outcome variables of analysis, I construct commuting zone level LFPR, weekly wages and

other regional covariates for prime-aged (age 25-54) males and other demographic group of

interest. The age scope largely excludes the concern of adjustment margins by education and

retirement. I use repeated cross-sectional surveys of IPUMS of Census (1950-2000, by decade)

and American Community Survey (2010 and 2019)19. These datasets include between 1 and

5 percent of the U.S. population and provide a comprehensive set of information at the

individual level with socio-demographics characteristics and labor market attachment. A

data offers the place of residence at the household level, permitting a linkage to climate

variables. All the analysis is limited to non-institutional samples in the U.S. mainland.

In 1970, most of commuting zones had a high LFPR above 90%. In 2019, however, the

U.S. underwent a significant LFPR drop, albeit with great regional divergence. Intriguingly,

intensive warming areas (Southeast and South) suffered from significant LFPR drops, while

mild warming areas (Northwest, Northeast) kept relatively higher LFPR, signaling a climate-

induced dropout hypothesis (See Appendix for a visual expression).

17Nine climate regions consist of Northwest, West, Southwest, West North Central, East North Central,
Central, South, Southeast and Northeast. See Appendix for heat maps.

18Typically, the histogram of days across daily temperature bins is single-peaked. Suppose that climate
change upshifts the temperature distribution. Then, one can see that climate change increases more hot
days at initially hotter areas.

19To secure the sample size, I followed the literature to stack each ACS samples with 2-year sample of
2009-2010 and 2018-2019, respectively.
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2.3 Outdoor jobs

To define the outdoor labor market under direct climate exposure, an important measurement

challenge is to document who works outdoors. To directly proxy a person working outdoors,

I adopt a task-based approach (e.g., Autor, Levy and Murnane (2003)) to probe occupational

requirements of work environments. I use Work Context survey of O*NET (Occupational

Information Network by the US Department of Labor), containing hundreds of standardized

and occupation-specific descriptors on nearly 1,000 occupations. In the category of “physical

and social factors that influence the nature of work”, I use a question of How often does

this job require working outdoors, exposed to all weather conditions? The answer is from

5 choices: 5. Every day; 4. Once a week or more but not every day; 3. Once a month

or more but not every week; 2. Once a year or more but not every month; 1. Never.

Combining answers 4 and 5, I compute an occupation-level likelihood of working outdoor

regularly at least weekly (extensive-margin) and an imputed weekly frequency of working

outdoors (intensive-margin)20 across 873 ONET-SOC occupations.21 Analogous questions

were separately asked how often each interviewee of one occupation work under non-air

controlled or air-controlled environments. Then, an ONET-SOC identifier can be connected

to occupation code (occ2010) in the Census and American Community Survey 22.

To illustrate the typical examples of outdoor jobs, Table 1 lists up the ranking of major

occupations (over 0.5 million employment in 2019) with a highest ratio of working outdoors

every day. One can see that all top 10 occupations are predominantly served by males and the

less educated with very fewer college ratio, typically below 10%, in agriculture, construction

and service sectors.

Defining “outdoor workers” as engaged in working outdoors regularly at least weekly,

Figure 3 (top) shows an imputed share of outdoor workers within sectors and sectoral mix

20I take a middle point of each answers; 5 Everyday for 4.5, 4 Once a week or more for 3. Then, the
frequency is weighted averaged with the number of replies.

21Using Work Context Survey, Dingel and Neiman (2020) defined a job which can be done at home.
Conceptually, jobs which can be done at home and outdoor jobs are mutually exclusive, but not exhaustive.
Jobs at indoor facilities (e.g., restaurant waiters; janitors; laboratory scientists) away from home do not
belong to either category.

22See Appendix for details.
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Table 1: Occupation rankings of outdoor exposure (2019)

ranking description

sector of
largest

employment
share

work
outdoors
everday

(ratio)

work
outdoors

at least
weekly
(ratio)

male
ratio

colleged
worker

rartio

employment
(2019)

1 Construction Laborers construction 81% 81% 96% 4.8% 1,894,577
2 Driver/Sales Workers and Truck Drivers service 76% 92% 93% 5.8% 3,693,300
3 Police Officers and Detectives service 66% 85% 84% 34% 914,692
4 Agricultural workers, nec agriculture 66% 83% 75% 5.8% 775,746
5 Grounds Maintenance Workers agriculture 65% 66% 94% 6.1% 1,313,674
6 Laborers and Freight, Stock, and Material Movers, Hand service 57% 63% 79% 5.2% 2,343,733
7 Industrial Truck and Tractor Operators service 57% 60% 92% 2.9% 634,116
8 First-Line Supervisors of Construction Trades and Extraction Workers construction 56% 91% 96% 9.1% 779,073
9 Carpenters construction 54% 71% 98% 5.9% 1,254,008

10 Maintenance and Repair Workers, General service 51% 85% 96% 6.9% 582,332

Note: An occupation ranking is ordered by a ratio of employees working outdoors everyday inferred from

Work Context Survey, from ONET, limiting occupations (occ2010 ) with over 0.5 million annual employment

in from IPUMS of 2018-2019 stacked American Community Survey (population-weight is adjusted in 2019).

A sector of largest employment share is the largest sector where workers of each occupation belongs from

agriculture, construction, manufacturing, utility and service. (See the main text for details.)

of outdoor workers. Over 50% of agriculture, near-half of construction, one third of trans-

portation and mining/utility, and less than 10% of manufacturing and service employees

work outdoors. Given that even heat-sensitive sectors include a substantial portion of non-

outdoor workers, I posit that an occupation is more direct proxy to characterize outdoor

labor than sectors. By contrast, Figure 3 (right) shows the sectoral composition of out-

door workers. Although heat-sensitive sectors of agriculture and construction consistently

accounted for near-half, outdoor jobs are prevalent across all sectors of the U.S. economy.

To capture demographic profiles under direct exposure of climate change, Figure 3 il-

lustrates a share and composition of outdoor workers by sex and education attainments.

Figure 3 (middle; left) shows that one-third of males vs. 10-15% of females (aged 16 and

above) work outdoors. As 75-80% of outdoor jobs are served by males, it is safe to presume

that outdoor jobs are largely “male occupations”. (middle; right) Limiting to prime-aged
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Figure 3: Descriptive statistics of outdoor workers (proportion (left) and composition (right))

Note: Computed from IPUMS of Census 1970-2000 by decades and stacked American Community Survey

2009-2010 (for 2010) and 2018-2019 (for 2019). Employment of outdoor worker is computed by a sample

weight multiplied with a likelihood of regularly working outdoors at least once a week recorded in Work

Context Survey from the O*NET (See the main text).
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males (bottom)23, I analogously document the share of (left) and composition by (right)

workers’ education attainment. Intriguingly, non-college workers are increasingly more likely

to work outdoors. Given that outdoor jobs provide hard-to-automate, non-tradable ser-

vice, shrinking indoor manufacturing employment were absorbed by outdoor jobs, which are

immune from automation and trade competition. This is aligned with a well-rehearsed nar-

rative of labor market polarization (Autor and Dorn (2013))24 that middle-wage employment

with routine tasks were shifted to low-wage non-routine manual occupations, exemplified by

outdoor jobs in this study.

Figure 3 (right column) overall implies that 70% of outdoor jobs are predominantly served

by prime-aged less educated males prevalent across all sectors. Given that the overwhelming

majority of labor market dropouts have high-school graduates and less, the data signals that

an outdoor labor market is presumably a hotbed of dropouts (as is tested below).

3 Analysis

Employing the newly created panel of regional labor markets linked with exposure to climate

change, this section estimates the impacts of global warming on LFPRs and other related

market outcomes.

3.1 Empirical Model

To isolate the effect of climate change from other correlates, I start by building a following

binned specification for a demographic group g (e.g., a baseline sample g is prime-aged (25-

54) males) across CZ i and 5 year periods I = [I, I] ∈ {(1976, 1980], [1986, 1990], [1996, 2000],

[2006, 2010], [2016, 2020] :25

23I compute that prime-aged (25-54) workers, a primary scope of this study, have consistently accounted
for 70-80% of outdoor workers.

24Intriguingly, the total employment share of outdoor workers is fairly stable despite the rising share of
working outdoors for less educated males. This is reconciled by a decline of high-school dropouts and rise of
college enrollments.

25To avoid the Covid 19 pandemic shock in the year 2020, I used a linearly extrapolated outcome in a
linear extrapolated value s.t. ygi,2020 = (ygi,2019 − ygi,2010)×(10/9) + ygi,2010. Likewise, for the final period

14



yg
i,I

=
∑

b∈{1,··· ,11,13,··· ,16}

βg,bdaysbI + βgXg

I−1︸ ︷︷ ︸
a vector of pre-period controcs

+δi +δI + I(CensusDivision)I︸ ︷︷ ︸
Census division trend

+ εi,I

(1)

where yg
i,I

is a i’s period-end outcome (e.g., LFPR, employment rates, wages) in group

g and daysbI is a mean number of days with median business-hour daily temperature during

the period I, falling into 16 bins {(−∞, 20), [20, 25), · · · , [65− 70), [75− 80), [80− 85), [85−

90), [90,∞)}◦F ordered by b ∈ {1, · · · 16}.26 As an annual sum of bins is constant, I omitted

a twelfth (b = 12) bin, [70, 75)◦F (or [21.1,23.9)◦C) 27 as a benchmark. Aligned with the

convention of climate literature, I assume that a daily weather is meteorologically random

at each region endowed with its unique geographic features (e.g., elevation and distance to

coasts); annual distribution of weather cannot be affected by regional economic activities,

which could be simultaneously shaped by labor market attachments of prime-aged males.28.

βg,b is an estimand of interest, interpreted as replacement of 10 days in bth bin with the

pre-set benchmark temperature of bin [70, 75)◦F .

Given a demographic group g, Xg

I−1
is a vector of commonly listed covariates at the

pre-period outcome year I−1, with corresponding coefficients βg, consisting of 5 components

such that X = {Ci,I ,D
g

i,I−1
,Ei,I−1

,Mg

i,I−1
,Wg

i,I−1
}. Ci,I includes other climatological vari-

ables except temperature (relative humidity; precipitation; snowfalls) averaged during the

period I. Dg

i,I−1
contains a rich vector of demographic composition of a group g: a share of

race and ethnicity groups, 10-year age bins, non-migrants29, immigrants and veterans at the

end of pre-period I−1. Ei,I−1
is an industry structure to capture labor demand side dynam-

[2016, 2020], I use a 5-year average of days under each bin during 2015-2019.
26For leap years, the number of days in each bin is adjusted by multiplying 365/366
27Graff Zivin and Neidell (2014) specified the breakpoint of hot day as similar to mine, 25C. Chen and

Yang (2019) used 21-24C as baseline bin in China, very close to mine.
28I also presume that each region (or even a country) is small enough to affect the entire data generating

process of weather. Given the well-rehearsed narrative of collective actions (observed in The Intergovernmen-
tal Panel on Climate Change (IPCC)), climate change proceeds in the planet scale shaped by miscellaneous
global factors (e.g., greenhouse gas emission, a polar vortex and fluctuations of volcanic activities).

29Non-migrants are people who had not crossed state borders within 5 years.
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ics (employment share of manufacturing, agriculture and construction; mean establishment

size). Mi,I−1
characterizes a pre-period regional factors (a ratio of over-65 seniors above;

poverty ratio; population density). Wg

i,I−1
is a health and wealth factors (ratio of the dis-

abled; mean family income; mean social security benefits; a ratio of house renting; regional

housing values) to shift a labor supply dynamics. All the covariates X are constructed from

the Population Census and ACS (See Appendix for details) except mean establishment size

(from County Business Pattern, Eckert, Fort and Yang (2021)).

Inclusion of two-way fixed effects (δi in CZ-level and δI in period-level) essentially for-

mulates a difference-in-difference model, producing the estimates from within-CZ variation

net of common time shifter (e.g., business cycle; technology shocks; federal-level institutional

change) (Dell, Jones and Olken (2014)). To cover regional trend of labor demand and supply,

I include a common trend of nine Census divisions I(CensusDivision)I. εi,I is a normally

distributed error term. Because weather variables are spatially correlated, robust standard

errors are clustered at CZ levels, a spatial unit of analysis. The model is weighted by a

pre-period CZ share of national prime-aged male population.

Armed this full-battery of meteorological and socioeconomic controls with Census di-

vision common trend after isolating two-way fixed effects, one would hardly consider other

confounders to shape the labor market outcomes and βg,bshould be presumably given a causal

interpretation. For sensitivity of estimates to measurements and time windows of hot and

cold days and more stringent fixed effects, see the robustness check in Section 3.3.

3.2 Baseline results

Semi-parametric bin estimates Setting LFPR as an outcome in (1) (yg
i,I

= LFPRg

i,I
) in

the period end year I, Figure 4 illustrates estimates of the semi-parametric bin model (1).
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Figure 4: Bin estimates of climate change on labor force participation rate (prime-aged
males)
Note: (Top) Estimates of βb in equation (1) are illustrated with 95% confidence intervals (red dashed lines).

Baseline bin is a 70-75◦F . (Bottom) Nationwide temperature exposures normalized in 365 days are

allocated over 1◦F bins (truncated with 10◦F and 100◦F ) along the mean work hour temperature

during 1971-1980 and 2011-2019. The nationwide exposure is computed as a weighted average of

regional exposure with start of period CZ prime-aged male population during each period. Dotted

lines are thresholds of hot (> 75◦F ) and cold days (< 35◦F ) in the baseline specification.

The analysis shows clear non-linearity of climate effects along daily temperature. Re-

placement of 10 days (i.e.; business days in two weeks for typical full-time workers) in a

benchmark bin ([70-75)◦F ) to hotter days above 75◦F significantly drops LFPR of prime-

aged males by approximately −0.4 p.p.. Likewise, 10 day replacement to cold days below 35◦F

yields slightly larger negative impacts, but with wider 95% confidence intervals. Replace-

ment to other “normal days” with moderate temperature (35-70◦F ) does not significantly
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affect LFPR, as the confidence interval crosses the outcome axis.

This inverted-U non-linearity is canonically reported in prior climate literature on agri-

cultural productivity (Schlenker and Roberts (2009)), labor productivity (Somanathan et al.

(2021)), mortality (Barreca et al. (2016); Deschenes and Moretti (2009)) and GDPs (Burke,

Hsiang and Miguel (2015)) and indoor laboratory studies (Seppanen, Fisk and Faulkner

(2003)).

As a core mechanism to connect climate change with labor markets, extreme temperatures

harm physical and mental health of workers; high temperatures can increase heart and

respiratory rates, reduce blood pressure, sweat the body, cause fatigue. Cold temperatures

narrows blood vessels, tightens muscles and depletes energy to sustain the body temperature.

The non-linearity signals that a production function of labor is closely tied with the biological

structure of their human bodies.

Baseline estimates Given the inverted-U non-linearity, I proceed to use a more par-

simonious model featuring with upper and lower tails of weather distribution to further

improve precisions of estimates (a la Barreca et al. (2016); Somanathan et al. (2021)). Op-

erationally, I replace the climate change terms in the main specification (1),
∑

b=1 β
g,bdaysbI ,

by βg,hhdi,I + βg,ccdi,I , where hdi,I , cdi,I are average number of hot and cold days exposed

to region i during period I, respectively. Guided by the previous 5°F bin estimation and

also informed by the literature, thresholds of hot days and cold days are set with 75°F and

35°F of median business hour temperature, respectively30. Therefore, βg,h, βg,c captures the

climate effect of interest of group g, capturing an impact of replacing 10 “normal days” with

[35, 75)◦F by 10 hot or cold days, respectively. Table 2 reports estimates of a parsimonious

model.

Founded by the equation (1), a preferred specification Column (5) inherits a full battery

of controls and Census division trend under two-way fixed effects, indicating that a decadal

baseline shift of 10 more hot days decreases the LFPR by 0.239 p.p. (p < 0.1%). Remarkably,

the effect is fairly stable for exclusion of pre-period controls in Column (1)-(4). In addition to

30See Footnote 27 for reference to prior works. A robustness check is also provided for alternative thresholds
of hot and cold days (Section 3.3).
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Table 2: Climate change and labor force participation rates (LFPRs) across commuting
zones (prime-aged male population; outcome years, 1980-2019)

(1) (2) (3) (4) (5)
10 hot days -0.286 *** -0.294 *** -0.280 *** -0.246 *** -0.239 ***

(0.065) (0.068) (0.068) (0.066) (0.071)
10 cold days -0.444 *** -0.487 *** -0.498 *** -0.454 *** -0.451 ***

(0.152) (0.153) (0.155) (0.115) (0.122)

climate Yes Yes Yes Yes Yes
demography Yes Yes Yes Yes Yes

industry structure No Yes Yes Yes Yes
labor market No No Yes Yes Yes

health and wealth No No No Yes Yes
Census division trend No No No No Yes

adjusted R-squared 0.863 0.866 0.867 0.880 0.881

dependent variable: LFPR (percentage point)
(prime-aged (25-54) males)

pre-period covariates

Note: N = 3, 610 (5 time periods × 722 Commuting Zones). LFPR is computed in prime-aged (age 25-54)
males in the U.S. mainland in years 1980-2000 by decades from Population Census and in 2010, 2019 from
stacked American Community Survey 2009-2010 and 2018-2019, respectively. Hot days and cold days are
prior 5-year averages of the number of days with mean temperature of business hours (8am-6pm) over 75°F
and less than 35°F, respectively. Pre-period covariates are constructed at pre-period outcome years (See
main text for details). All models include commuting zone and year fixed effects. Robust standard errors
in parentheses are clustered by commuting zones. All models are weighted by pre-period commuting zone
share of national prime-aged male population. *** p < 1%.

climate variables Ci,I (relative humidity, precipitation, snowfall), (1)-(5) sequentially adds

demography controls Dg

i,I−1
, industrial structure, Ii,I−1

, labor market status, Mg
i,I−1

and

health and wealth variables, Wg

i,I−1
, and a Census division trend. However, the magnitudes

and precision are largely unchanged, corroborating the identification assumption that climate

change is quasi-random independent of other correlates for LFPR of adult males.

3.3 Robustness checks

Before applying the model to other outcomes, or dive into the mechanism, this section

explores the robustness of the baseline results around the following drivers of estimation.

Other auxiliary exercises are also provided in Appendix.
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Proxies of weathers In the baseline model, thresholds of hot and cold days are set as

75◦F (23.9F) and 35◦F (1.7C), guided by a 5°F bin semi-parametric estimates in Figure 4 and

informed by the literature using two-tail temperature models (See Footnote 27). I examined

alternative cutoff pairs with 70◦F , 75◦F , 80◦F (hot days) and 30◦F , 35◦F , 40◦F (cold

days). Adverse climate effects remain (Table A3), however, a baseline pair of 75◦F and 35◦F

generates the most precise estimates both for hot and cold days. I also examined alternative

formulation of precipitation and snow, however, the results are qualitatively unchanged (See

Appendix).

Treatment windows In the baseline model, climate change is proxied by a medium-run

5 year average of hot and cold days (4 year for the latest period [2016 − 2019]) . Instead,

I test the sensitivity in shorter or longer treatment windows, ranging from 1 year, 10 year,

15 year. The estimates would get weaker, but qualitatively similar. (Table A4, Appendix)

Given that workers might relocate the regions (See Section ?? for concern for migration)

or even exceed the prime age limit of 55 after a decade, time window of 10 year appears

too long. 1-year temporary shocks does not yield a significant estimates despite its negative

sign, suggesting that labor supply would not immediately react to contemporaneous weather

shocks, but in cumulative years——aligned with the tale of “frogs in the boiled water”.

State-year fixed effects Readers may worry that two-way fixed effects and Census di-

vision trend are elusive on time-variant statewide institutions (e.g., welfare system; health

care; minimum wages; unionization; heat regulation law), which might independently affect

both regional labor supply and demand. Given that each state has only 15 CZs (median)

and within-state climate change is similar, unsurprisingly, inclusion of state-year fixed ef-

fects is challenging; it neglects most of useful stark cross-regional climate variation, which

has been central for identification. (c.f., Pierce and Schott (2020)) Despite the drastically

limited treatment variation, however, estimates of hot days survive (-0.136 p.p. for 10 hot

days (p = 7.0%)), suggesting that statewide institutions does not critically drive the results.

Discomfort index On extreme hot days, discomfort could be fueled by humidity (c.f.,

Barreca (2012)). Instead of controlling relative humidity in Ci,I , I directly used an average
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number of discomfortable days with discomfort index (DI) above 75, computed from a stan-

dard meteorological formula, a function of temperature and relative humidity. Expectedly,

replacing hot days by discomfortable days yields larger and more robust estimates.31

3.4 Heterogeneous analysis by demographic sub-samples

As a predominant share of outdoor workers are less-educated and the less-educated workers

have presumably less outside options indoors, climate impact should be much more salient for

less-educated workers. To explore the heterogeneity of impacts, I reestimate the model, split-

ting to male subsamples by education attainment group g ∈ {HS dropouts, HS graduates,

some colleges, college graduates}with group-specific controls Xg
i,I , in Table 3.

Aligned with the speculation, the effect is drastically sharper for less-educated males,

especially, high-school dropouts (-0.684 (p < 1%)). Coefficients for workers with above high-

school degrees (3)-(5) are not statistically significant, consistently with their few entry to

outdoor jobs and richer outside options in indoor jobs. Overall, the impact of climate shocks

is systematically regressive for non-colleged workers.

Analogously, I split male samples into 5 age bins with subsample g consisting of males

aged in {[18, 25), [25, 35), [35, 45), [45, 55), [55, 65)}, with group-specific controlsXg
i,I . Aligned

with our scope of the analysis to prime-aged (25-54) males, climate effects of hot days is

significant, especially for the middle-aged 35-44 (−0.320 (p < 0.1%)). The harm of cold

days is severest for 25-34 males (−0.479 (p = 0.1%)), and less significant for 45-54 males

(−0.253 (p = 14.5%)). The dropout of this period is alarming for sustaining a standard of

living till the elderly age and child rearing (if any). The effect is insignificant for non-prime

aged males (aged 18-24 young males and aged 55-64 senior males), aligned with relatively

lower ratio of outdoor workers.

31If a DI exceeds 75, more than half of people supposedly feel discomfort. See construction of discomfort
index in Appendix. Analogously, combining temperature and humidity via WBT (wet bulb temperature),
Somanathan et al. (2021) obtained more adverse effects on plant productivity relative to conventional daily
mean temperature.
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Table 3: Climate impacts by education attainments and age groups (males; outcome years,
1980-2019)

(1) (2) (3) (4) (5)

-0.600 *** -0.246 *** -0.329 *** -0.111 -0.112 *
(0.193) (0.087) (0.091) (0.070) (0.061)
-0.134 -0.012 -0.257 -0.253 ** -0.208 ***
(0.292) (0.211) (0.187) (0.102) (0.069)

adjusted
R-squared 0.815 0.868 0.862 0.755 0.699

(1) (2) (3) (4) (5)

18-24 25-34 35-44 45-54 55-64

-0.228 -0.219 ** -0.320 *** -0.179 ** 0.020
(0.208) (0.095) (0.076) (0.087) (0.152)
-0.300 -0.479 *** -0.396 ** -0.253 0.384
(0.216) (0.143) (0.166) (0.173) (0.261)

adjusted
R-squared 0.836 0.769 0.815 0.852 0.866

Dependent variable: LFPR (percentage points)

10 hot days

10 cold days

10 hot days

10 cold days

Panel A: by education (prime-aged (25-54) males)

HS
dropouts

HS
graduates

HS
graduates
and less
((1)+(2))

some
college

college
graduates

Panel B: by age (males)

Note: N = 3, 610 (5 time periods × 722 Commuting Zones) LFPR is computed in prime-aged (age 25-54)

males in the U.S. mainland in years 1980-2000 by decades from Population Census andin 2010, 2019 from

stacked American Community Survey 2009-2010 and 2018-2019, respectively. Hot days and cold days are

prior 5-year averages of the number of days with mean temperature of business hours (8am-6pm) over 75°F

and less than 35°F, respectively. All models include a full battery of controls in Column 5 at Table 2

constructed within each subsample and commuting zone fixed effects. Robust standard errors in parentheses

are clustered by commuting zones. All models are weighted by pre-period commuting zone share of national

population of each sub-sample. *** p < 1%; ** p < 5%; * p < 10%.

3.5 Employment, non-employment and unemployment

To further investigate the climate impact on mode of labor market attachment, I decompose

labor force to employment, unemployment32, full-time students and a dropout in Table 4.

32My unemployment measure is a ratio of unemployed to regional prime-age population instead of labor
force participants.
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Table 4: Climate change and labor market attachment across commuting zones (prime-aged
males; 1970-2019)

Note: N = 3, 610 (5 time periods × 722 commuting zones. Each outcome proxy is computed in prime-aged
(age 25-54) males in the U.S. mainland in years 1980-2000 by decades from Population Census and in 2010,
2019 from stacked American Community Survey 2009-2010 and 2018-2019, respectively. Hot days and cold
days are prior 5-year averages of the number of days with mean temperature of business hours (8am-6pm)
over 75°F and less than 35°F, respectively. All models include a full battery of controls in Column 5, Table
2 and commuting zone and state × year fixed effects. Robust standard errors in parentheses are clustered
by commuting zones. All models are weighted by pre-period commuting zone share of national prime-aged
male population. *** p < 1%; ** p < 5%; * p < 10%.

As a baseline result, Column 1 inherits the main specification Column 5 in Table 2. Com-

pared with LFPR in (1), employment rate (or employment-to-population ratio) in Column

4 shows even larger estimates −0.341p.p. (p < 0.1%), ensuring that LFPR drop is not driven

by decrease in unemployment. Within employment rates, salaried employment received

severer effect with both economic and statistical significance −0.570p.p. (p < 0.1%) in Col-

umn 2, while the effect on self-employment was +0.177p.p. in Column 3 and self-employees
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working at home33 was +0.054p.p. in Column 8, respectively (p < 5%). Interpretably, self-

employment (including “gig works” such as ride share drivers and freelancers), especially

at home, permits elastic labor supply with a flexible work schedule34, resilient to outdoor

climate shocks. Consequently, Column 8 shows that dropout-to-population ratio is fueled

by +0.221p.p. (p < 5%). Intriguingly, the effect is partially offset by rise in full-time student

ratio shown in Column 7. Given the scope of adult males over 25, this might be surprising,

but somewhat reasonable if college life is mostly indoors.

Theoretically, climate’s impact on an unemployment-to-population ratio is ambiguous.

On one hand, outdoor workers become unemployed by layoffs or exits to search for alternative

jobs. On the other hand, unemployed workers might quit job search to become a dropout

from larger search costs.35 Column 6 shows a positive estimate for unemployment rates,

indicating that on a net basis, employments are pushed out to an unemployment pool,

suggesting that homes provide solid air-conditioned cooling shelters from climate change (as

tested below in Section 4.2.1).

3.6 Outdoor vs. indoor labor markets

Previous section showed that the LFPR drop is driven by declining employment-to-population

ratio. By splitting the employment by environments of outdoor exposure, this section first

tests whether the employment shrinkage is triggered by regional outdoor labor markets.

Then, I turns to explore the wage responses of outdoor jobs.

Employment rates I test whether climate change reduced employment rate of outdoor

jobs relative to indoor jobs. To see this, using Work Context Survey questions, I split

the employments to outdoor jobs, indoor jobs with non-controlled environments, and air-

controlled indoor jobs in a mutually exclusively way. Outdoor jobs are imputed number

33To detect workers at home, I use an answer of “working at home” in a question on commuting mode
(i.e., how do you commute?).

34See Katz and Krueger (2019) for recent rise in alternative work arrangements.
35Especially before the Internet era, extreme weathers would have raised search cost because job search

requires a series of outdoor activities (e.g., going to a job agency; on-site interviews).
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of employees who work outdoors at least once a week. (See section 2.3 for details). Aside

from outdoor jobs, indoor non-controlled jobs are who work indoors under non-controlled

environment at least once a week. The rest is air-controlled indoor jobs.

Setting an employment rate of each job category in the main specification, Table 5 sum-

marizes the results. Consistent with the theory, I find that an outdoor employment rate

significantly shrunk in (1) in response to more hot days. By contrast, employment rates

with indoor workplaces show a statistically insignificant point estimate. No evidence was

found for transfers from outdoor to indoor workplaces, indicating that outdoor workplaces

would be a hotbed of dropouts. One explanation is that skills in outdoor cannot be trans-

ferrable to indoor occupations.

wages I proceed to investigate the response of wages of outdoor employment, which not

only informs the benefit of surviving employees, but signals the relative labor demand vs.

supply forces at work. In parallel to employment rates across occupations, I examine how

wages in outdoor vs. indoor employment responded with climate change. Theoretically,

climate impact on wages of outdoor jobs is ambiguous. On one hand, diminishing labor

productivity would suppress their wages from contraction of labor demand. On the other

hand, as labor cost increases, we should expect that survivors’ wages rose from shrinkage

of labor supply. By a worker-level analysis, I examine how a weekly wage36 responds with

climate change, controlling for individual demography and education, and three-fold fixed

effects in CZ-occupation group, state-year and occupation group-year levels.

Table 5 (Panel B) shows a significantly negative impact of hot days on wages of outdoor

workers. A standard labor market model suggests that the negative wage response indicates

relative dominance of labor demand reduction.37

36 I compute weekly wages of full-time full-year workers excluding self-employees, by dividing annual labor
income by weeks worked during a year.

37Deryugina and Hsiang (2014) reported negative impacts of temperature on mean annual income across
U.S. counties. By contrast, my analysis found an adverse impact on weekly wages and annual income
specifically for outdoor workers.

25



Table 5: Climate change and employment rates across climate exposure (prime-aged males;
1980-2019)

(1) (2) (3)
10 hot days -0.167 ** -0.028 -0.127

(0.066) (0.025) (0.106)
10 cold days -0.135 0.006 -0.415 **

(0.097) (0.053) (0.190)

observations 3,610 3,610 3,610

(1) (2) (3)
10 hot days -0.953 *** -0.901 -0.089

(0.320) (0.701) (0.385)
10 cold days -0.451 -1.000 -1.590 *

(0.717) (1.160) (0.865)

observations 48,300,679 19,320,272 135,241,900

outdoor indoor
non-controled

indoor
controled

Panel B: dependent variables: log (weekly wage)
(worker-level)

outdoor indoor
non-controled

indoor
controled

occupaton category

Panel A: dependent variables: employment-to-population ratio
(percentage point; czone-level)

occupaton category

Note: An employment-to-population ratio is computed in prime-aged (age 25-54) males in the U.S. mainland

in years 1980-2000 by decades from Population Census and in 2010, 2019 from stacked American Community

Survey 2009-2010 and 2018-2019, respectively. Occupation categories are defined mutually exclusive based

on O*NET Work Context Survey (see text for definitions). Hot days and cold days are prior 5-year averages

of the number of days with mean temperature of business hours (8am-6pm) over 75°F and less than 35°F,

respectively. All models include a full battery of controls in Column 6, Table 2 and commuting zone and state

× year fixed effects. Robust standard errors in parentheses are clustered by commuting zones. *** p < 1%;

** p < 5%; * p < 10%. (Panel A) N = 3, 610 (5 time periods × 722 commuting zones ). All models are

weighted by pre-period commuting zone share of national prime-aged male population. (Panel B) Limited to

prime-aged (age 25-54) salaried full-time full-year employees in the U.S. mainland. Weekly wage is computed

from IPUMS of Population Census and American Community Survey. All models include an experience,

experience squared, a dummy of races and immigrants, veteran, education attainments, interacted with a

year dummy. All models also include commuting zone, state × year, occupation group × year fixed effects.

Robust standard errors are clustered by commuting zones. All models are weighted by sampling weight share

of each subsample employment.
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If this is the case, global warming should be readily comparable to other conventional

labor demand shocks from technological revolution (Autor, Levy and Murnane (2003); Ace-

moglu and Restrepo (2020)) and free trade (Autor, Dorn and Hanson (2013)). The finding

is aligned with a few recent establishment-level studies on climate impact on labor demand

adaptations on the employer side. Across U.S. counties, Ponticelli, Xu and Zeume (2023)

showed temperature shocks increased energy costs and lowered the productivity of small

manufacturing plants, and led to higher production concentration in large plants. Acharya,

Bhardwaj and Tomunen (2023) showed that firms operating in multiple counties reallocated

employment in warming counties elsewhere, whereas single-county firms just shrunk. Using

an individual dataset, my paper complements their works by showing disproportionately

adverse climate impacts on outdoor labor markets.

4 Mechanism

4.1 The role of outdoor labor market

To explore the mechanics behind the main result, this paper highlights the understudied

role of regional outdoor labor markets. As directly exposed to climate change without air

conditioners, one would presume that climate impact moves with regional dependency on

outdoor jobs. To see this, I interact climate variables hdi,I , cdi,I with a pre-period dependency

on outdoor jobs in a modified model of difference-in-difference formulation such that

yg
i,I

= βg,hhdi,I + βg,ccdi,I + γg,hhdi,Ir
g,out

I−1
+ γg,ccdi,Ir

g,out

I−1
+ γg,outrg,out

I−1
(2)

+βgXg

I−1
+ δi + δI + I(CensusDivision)I + εi,I ,

where rg,out
I−1

is dependency on outdoor workers of group g at the end year of pre-period.

γg,h, γg,c captures a shifter effect of outdoor exposure to the climate impact of interest.

Setting g as prime-aged males, Table 6 shows the results.
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Table 6: The climate effects and regional dependency on outdoor jobs across commuting
zones (prime-aged male population; outcome years, 1980-2019)

OLS OLS IV IV

(1) (2) (3) (4)

0.117 0.088 0.071 0.068
(0.157) (0.153) (0.076) (0.076)

-0.731 ** -0.687 ** -0.181 -0.163
(0.302) (0.283) (0.143) (0.143)

-1.221 ** -0.254 * -1.042 *** -0.239 ***
(0.582) (0.131) (0.328) (0.073)

0.705 0.118 -1.361 *** -0.328 ***
(0.829) (0.174) (0.525) (0.120)

 outdoor pre-share 0.128 0.027 0.141 ** 0.033 **
(0.112) (0.025) (0.064) (0.014)

adjusted R-squared 0.879 0.879 0.879 0.879

intensive-margin
outdoor pre-share

dependent variable: LFPR (percentage point)
(prime-aged (25-54) males)

extensive-margin
outdoor pre-share

10 cold days ×
outdoor pre-share

10 hot days

10 cold days

10 hot days ×
outdoor pre-share

Note: N = 3, 610 (5 time periods × 722 Commuting Zones). LFPR is computed in prime-aged (age 25-54)
males in the U.S. mainland in years 1980-2000 by decades from Population Census and in 2010, 2019 from
stacked American Community Survey 2009-2010 and 2018-2019, respectively. See definitions of outdoor pre-
share in the main text. The model inherits full-controls, division trend and fixed effects at Column 5, Table
2. *** p < 1%; ** p < 5%; * p < 10%.

(1) and (2) identify the effects mediated via outdoor labor market with different proxies

of outdoor exposure rg,out
I−1

. (1) uses an extensive margin, a imputed ratio of full-time workers

who regularly work outdoors at least weekly. (2) uses an intensive-margin, an imputed

frequency of working outdoors within a week, weighted by work weeks of each observation.

In both (1) and (2), interaction terms γg,h show significantly negative estimate (γg,c was

insignificant). This indicates regions initially dependent on outdoor jobs underwent larger

subsequent harms.

This approach raises the question of what determines pre-period outdoor exposure to vary

across commuting zones. One might worry that pre-period outdoor exposure is correlated

with the current period warming trend, if the previous period warming reduces a ratio of

outdoor workers (shown below). Consequently, if a regional warming trend is consistent, the
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interaction term might merely reflect an intensification (i.e., hotter areas experience larger

adverse effects from 10 more hot days). To address this potential bias, I exploit historical

cross-CZ differences in industry specialization to isolate the near-exogenous component of an

outdoor occupation share, rout1950. A shift-share outdoor exposure is computed as an imputed

outdoor employment based on the pre-period national share of industry employment such

that

rg,out
i,I−1

=

∑
k ω

g,i
k,1950L

out
k,I−1

Pi,I−1

where ωg,i
k,1950 ≡

Lk,i,I−1

Lk,I−1

(industry k ’s share of region i in group g in 1950), Lout
k,I−1

is an

outdoor employment at industry k in the pre-period I−1 and Pi,I−1
is a prime-aged male

population at region i in the pre-period I−1. I presume that this imputed outdoor exposure

extracts an outdoor exposure dictated from the historical industry mix, but is uncorrelated

with subsequent climate exposure. Reassuringly, (3)-(4) gives a slightly smaller in magnitude,

but with higher precision for γg,h. Intriguingly, γg,c also shows significantly (and even larger)

negative estimates.

4.2 Labor supply mechanism

A standard labor market model suggests that the negative elasticity of outdoor job wages

(shown in Table 5) indicates relative shrinkage of labor demand curve. Armed with a pair

of empirical strategies in Section 4.2.1 and 4.2.2, this section investigates an understudied

mechanism on the labor supply side, which is potentially masked by the behavior of wages.

4.2.1 Role of residential amenity

A fundamental barrier to distinguish labor supply detachment and labor demand shrinkage

is that climate change would not only augment labor cost (thus, suppress the supply) for

outdoor workers, but hurt labor productivity (thus, reduce the demand). The first strategy

exploits the regional spread of residential amenities (i.e., air conditioners and colored televi-

sions) since the late 1960s as a shifter to augment the labor costs without harming the labor

productivity. To implement this, I presume that residential amenities increase opportunity
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costs of labor by upgrading the value of leisure at home, but do not harm labor productiv-

ity38; watching televisions at home (at least, if moderate) does not presumably affect labor

productivity outdoors.39 Air conditioners would even help sustain labor productivity by

sheltering workers from outdoor heat waves, especially under extreme hot days.40

In 1955, air conditioners were only implemented in office buildings, supermarkets and

movie theaters, but fewer than 2% of the residences had air conditioning (Biddle (2008)).

According to the Census of Households, an ownership rate of air conditioners for a median

commuting zone has surged from 37.0% (in 1970) to 58.9% (in 1980). Although 97.0% of

households owned a television set in 1970, partially fueled by the rapid spread of cable TV

subscription, television sets per capita increased from 1.46 television sets (in 1970) to 1.62

(in 1980) for a median CZ41. Applying the extrapolation strategy of Barreca et al. (2016),

I impute a CZ-level adoption rate of residential air conditioners for all CZs and per capita

television sets for a subset of 214 CZs42, covering 80% of prime-aged male population, during

1970-1990 (See Appendix for proxy construction). This analysis is limited to the previous

century during 1970-2000 because both air conditioners and television sets have completed

penetrating the entire U.S. after 2000.

38Aguiar et al. (2021) assessed the impact of quality evolution of video game for labor supply of young
males. Albeit not prime-aged males, Waldman, Nicholson and Adilov (2006) documented that spread of
cable TV subscriptions induced children’s autism.

39I am not aware of studies associating television watching and labor productivity, especially of physical
tasks in this context. Watching television more likely affects cognitive ability, but no evidence is found
that watching TV would harm cognitive abilities (Gentzkow and Shapiro (2006); Gentzkow and Shapiro
(2008)). Using American Time Use Survey, Well-Being Module, however, Krueger (2017) (Table 3) reports
that watching TVs is associated with more tiredness and less sense of meaning for males aged 16-35, which
might jointly hurt labor productivity and increase labor costs.

40Barreca et al. (2016) document the benefit of air conditioners on reducing mortality under extreme
hot days during the twentieth century. Global warming hurt quantity and quality of sleep especially under
developing countries (Minor et al. (2022)), and air conditioners are shown to be effective.

41I use an extensive margin of TV sets due to wider geographic variations than a saturated near 100%
intensive margin of ownership rate.

42The limit of geographical coverage comes from Census 1960, recording a subset of counties, which are
mapped to commuting zones.
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Table 7: The role of residential air conditioners across commuting zones (prime-aged males;
1980-2000)

LFPR employ-
ment rate

unemploy-
ment rate LFPR

(1) (2) (3) (4)

10 hot days -0.131 0.008 -0.140 ** 0.170
(0.085) (0.108) (0.062) (0.135)

10 cold days -0.496 *** -0.530 *** 0.034 -0.439
(0.137) (0.186) (0.117) (0.290)
-0.165 * -0.398 *** 0.233 ***
(0.099) (0.117) (0.068)
-0.094 -0.113 0.019
(0.131) (0.193) (0.119)

-0.230 ***
(0.061)
-0.176
(0.176)

0.020 0.042 ** -0.022 *
(0.016) (0.019) (0.012)

0.024
(0.018)

czone fixed effects Yes Yes Yes Yes
state × year fixed effects Yes Yes Yes Yes

adjusted R-squared 0.963 0.943 0.886 0.974
observations 2,166 2,166 2,166 642

air conditioner share

TV sets per capita

10 hot days ×
TV sets per capita

10 cold days ×
TV sets per capita

10 hot days ×
air conditioner share

10 cold days ×
air conditioner share

dependent variables (percentage point)
(prime-aged (25-54) male population)

Note: N = 2, 166 (3 time periods × 722 Commuting Zones) for (1)-(3) and N = 642 (3 time periods × 214

Commuting Zones) for (4). Dropout rates and LFPR are computed in prime-aged (age 25-54) males in the

U.S. mainland in 1980, 1990 and 2000. Hot days and cold days are prior 5-year averages of the number

of days with mean temperature of business hours (8am-6pm) over 75°F and less than 35°F, respectively.

All models include a full battery of controls with division trend, commuting zone and year fixed effects in

Column 5, Table 2. All models are weighted by pre-period commuting zone share of national prime-aged

male population. Robust standard errors in parentheses are clustered by states. *** p < 1%; ** p < 5%; *

p < 10%.

To test the role of residential amenities as a shifter of climate impact, I use an analogous

difference-in-difference formulation in an equation (2), by replacing outdoor exposure by

spread of residential amenities at pre-period outcome years. Table 7 highlights the results.

Remarkably, all columns show expectedly complementary negative estimates with hot days,
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suggesting that improved residential amenity facilitated climate impacts.

(1) and (4) interacts hot and cold days with pre-period (1970-1990) adoption rate of

residential air conditioners and per capita TV sets. One can see the significantly adverse

interactive estimates for hot days (−0.165, −0.230). The interacted estimates for cold days

are negative, but not precisely estimated. For air conditioners, this could be reasonable

because air conditioners specialize in cooling down.43 Splitting LFPR into employment rate

in (2) and unemployment rate in (3), employment rate displays larger negative impacts which

is significantly offset by the rise of unemployment rate. As discussed in climate-induced

unemployment in Table 4, this could be consistent that homes endowed with residential

air conditioners provide comfortable shelters from outdoor climate change. Overall, the

analysis corroborates that climate change augments opportunity costs of labor, fueled by

richer residential amenities.

4.2.2 Preference for work

The first strategy features the spread of residential amenities as augment opportunity costs

of labor, instead of a direct costs of discomfort. As a complementary second strategy, I

directly measure preference for labor, which are supposed to shape labor costs, using a series

of work-related questions at World Values Survey (WVS). WVS 2017 wave started to record

a longitude-latitude of each interviewee, allowing for connection with regional temperature

and their affiliation of commuting zones. I use 5 questions regarding willingness to work

spread across modules. As each question has different formats and number of choices, I

normalize every answer from 0 (most negative response) to 1 (most positive response) for

work value44. (For raw description of survey questions, see Appendix.) I test how a recent

5 year experience of hot and cold days affected their value on works, controlling for their

demography, experience and education. Under state fixed effects, the estimates comes from

43Alternatively, I use residential electric heaters to see interaction with climate change. Intriguingly, only
cold days show positive estimates, suggesting that prevalence of modern heaters by contrast mitigate the
climate impact, presumably by sustaining labor productivity from the cold. (See Appendix).

44To be comparable across questions, I adjust that larger number indicates a positive response for work-
related values.
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within-state cross-CZ variation.

Table 8: Climate impact on work-related values (prime-aged males; 2017)

Note: Prime-aged (25-54) males in World Value Survey, 2017. Main climate variables are 10 year average of

hot days and cold days in the year before (2007-2016). See text for interpretation of each outcomes. Other

individuals controls include age, age squared, and dummies of race, immigrant and education attainments.

Start of period commuting zone level controls include commuting zone population density, share of agriculture

employment, a ratio of above 65 population, a ratio of people born in the same state, and a ratio of renting

a house. All the models include state fixed effects and weighted by a sampling weight of WVS. Robust

standard errors in parentheses are clustered by states. *** p < 1%; ** p < 5%; * p < 10%.

Table 8 summarizes the results. Perhaps surprisingly given the limited sub-sample of

prime-aged males, I find that experienced hot days significantly hurt value for work mea-

sured in (1), (2), (3), (5), of different format of multiple choice ((4) was less statistically

significant). The response is not observed in other samples of prime-aged females, older

(above 55) males and younger (under 25) males. Though occupation categories in WVS

prevents me to identify outdoor workers, the effect is stronger for less-educated and younger

workers under larger outdoor exposure, consistently with my main regional analysis. The

data is admittedly cross-sectional, and thus, low-morale adult males systematically self-select

warming locations within states. However, I view selection bias is limited given that WVS

near-randomly selects respondents along the national demographic composition.45 Collec-

45Analogously, selective attrition might be at work such that people with higher work value are less likely
to reply in WVS.Although I cannot entirely rule out the possibility, given that people with high work value
have smaller work costs and replying to WVS is an 2-3 hour part time job, I believe this is unlikely.
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tively, this auxiliary analysis suggests that climate change undermined the social norm for

labor force attachment together with subjective well beings.

4.3 Product market

Readers familiar with prior climate literature with focus on agriculture (e.g., Deschênes and

Greenstone (2007); McLeman and Smit (2006))46 would worry that the estimate LFPR drop

and adverse climate effect on outdoor labor market might be driven by product market

shocks; especially in the heat-sensitive agriculture, climate-driven damage and the decline in

agricultural productivity might reduce labor demand of farm laborers.

Although the story is plausible in development economies, I posit that it does not fit the

advanced economy, the U.S., where agriculture accounts for less than 1% of the total GDP

and only 1.5% of employment in 2019. Moreover, agriculture accounts for a non-negligible,

but still a minority ratio of 20% of outdoor employments (Section 2). To assess the role of

the agriculture sector, I exclude most agriculture-intensive regions (mostly agglomerated in

the West North Central). As exclusion of agriculture-intensive areas does not significantly

change the main estimates (See Appendix), I conclude that the product market is not likely

to be the primary channel to drive the results.

5 Assessment: climate impacts

Founded on the baseline estimates interacted with relative change in regional exposure to

hot vs. cold days, this section quantitatively assesses the contribution of climate change on

the observed decline of LFPR of adult males. In parallel to nationwide implications, I also

examine whether climate change exacerbated the socio-economic inequality across climate

regions and education groups.

46Peri and Sasahara (2019) reported urban-rural migration from climate-induced damages in agriculture
sector across the globe.
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5.1 Climate impacts

Global warming not only increases exposure to hot days, but decreases exposure to cold

days (shown at Figure 4 (Panel B)). Having established that both hot days and cold days

hurt labor market attachment (Table 2), the net impact would be an empirical question,

depending on the horse race between extreme temperature days.

An implied impact ∆LFPRg
R for a group g in region R (a set of i) from a end of period

year I0 to I1 is computed as

∆LFPRg
R =

∑
i∈R

ωg,i
R,t∗β

g,h(hdi,I1 − hdi,I0) +
∑
i∈R

ωg,i
R,t∗β

g,c(cdi,I1 − cdi,I0), (3)

where ωi
g,R,t∗ is a i’s group g population share within region R at a weighting year t∗∈ [I0, I1]

and hdi,I , cdi,I are average numbers of hot days and cold days during 5-year period I.

Figure 5 illustrates regional exposure to climate change (Panel A) and their implied

climate impacts (Panel B). Figure 5 (Panel A) highlights the well-known reversal of climate

change during (1) 1970-2019 vs. (2) 1950-1970 (pre-study period). One can see a stark

contrast of climate change; in 1950-1970, a median CZ underwent 2.6 less hot days and

1.4 more cold days, sometimes framed as the age of global cooling. As meteorology science

established, by contrast, the period during 1970-2019 is the age of modern global warming.

The U.S. is no exception; a median CZ experienced 5.5 more hot days and 0.2 less cold

days.47

Nationwide Pairing the baseline estimates with regional exposure to climate change, the

impacts of climate change are evaluated in Figure 5 (Panel B). Setting g as prime-aged males,

R as the entire 722 commuting zones, and specifying I0 = [1966, 1970], I1 = [2015, 2019], and

a weighing year t∗ = 2000 ∈ [1970, 2019] in the formula (3), the overall impact of the hot days

during the period is −0.378 p.p., accounting for 5.6% of the nationwide drop in LFPR.48.

47Hot days and cold days are computed as prior 5-year average such that an average of years 1946-1950
used for 1950, 1966-1970 for 1970, and 2015-2019 for 2019.

48As my two-way fixed effect model identifies the within-CZ climate effect on LFPR, I contrast an implied
impact with within-CZ component of nationwide LFPR drop. (See Appendix for construction of comparable
data moments).
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Figure 5: The implied impacts of climate change on prime-aged male labor force participation
rate, 1970-2019
Panel A: Hot days and cold days are prior 5-year averages of the number of days with median temperature
of business hours (8am-6pm) over 75°F and less than 35°F, respectively. Panel B: Aggregate effects are
computed based on the full specification Column 5 at Table 2 and CZ-level climate exposure nationwide,
weighted by CZ-level prime-aged male population. Effects by climate regions (by NOAA) are computed
by baseline estimates and CZ-level climate exposure within each region. Effects by education groups are
analogously computed group-specific estimates from sub-sample analysis at Table 3.
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The effect from reduced cooling is +0.270 p.p., non-negligibly counteracting the effect on

harm of warming. In net, the overall climate impact is −0.108 p.p..

By education groups and climate regions As exposure to climate climate drastically

differs across locations and given the stark heterogeneity of labor supply elasticity across

education groups (Table 3), the nationwide assessment presumably masks between- and

within-region inequality of the climate impact. Panel B (left) depicts the simulated impacts

across education attainments, employing βg,h, βg,c for each education groups g, borrowed

from the sub-sample analysis at Table 3. Mirrored by the divergence of elasticities, the

less educated groups (with high school graduates or less education attainment) underwent

significant drops by −0.347 p.p. (−0.904 p.p. for dropouts and −0.367 p.p. for HS graduates),

accounting for 3.3% of their LFPR drop.

Panel B (right) illustrates the regionally computed weights limiting R to each NOAA

climate region under baseline estimates. With salient difference of climate exposure, the

regional gap is notable. Initially hot areas (Southeast, South, West) areas underwent more

hot days, these areas received significant drop (−0.557 p.p. in Southeast, −0.356 p.p. in

South, −0.459 p.p. in West). Each corresponds to 7.7%, 5.4% and 7.6% of their LFPR drop,

respectively.49 By contrast, Northeast and Central area were harmed less, as the areas had

enjoyed fewer cold days, especially before 2000.50

Non-colleged under the global boiling Limiting our focus on the new century af-

ter 2000 under severer global warming, however, increase in hot days typically dominates

decrease in cold days. Figure 5 (Panel A) separately illustrates the climate change be-

fore and after 2000 (in (2-a) vs. (2-b)). The new century period (2000-2019) under-

went significant increase of hot days (+ 15.5 days) relative to negligible decrease of cold

49Give the their closeness to Mexican Gulf, Southeast and South have higher humidity than other climate
zones. As using discomfort index instead of hot days offers much larger estimates (See a robustness check in
Section 3.3), the assessment is likely to be a lower bound.

50A simulation after 2000 would suggest that these areas also received an intensive increase in hot days.
See Appendix for after-2000 counterpart of the impact assessment.
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days (-0.2 days), which is a stark contrast to pre-century period (1970-2000)51. Specifying

I0 = [1996, 2000], I1 = [2015, 2019], and a weighing year t∗ = 2000 ∈ [2000, 2019] in the

formula (3), the simulation suggests that netting out competing forces after 2000, climate

change significantly hurt LFPR by −0.320 p.p., explaining for 12.4% of the nationwide drop

in LFPR during 2001-201952. Remarkably, regarding high-school graduates and less, climate

change explained even larger 17.7% of the nationwide LFPR drop.53 By climate regions,

Southeast experienced the largest drop −0.482 p.p. (12.5% in total), however, other areas

Northeast and Central also underwent concerning adverse effects −0.383 p.p. (22.0% in to-

tal) and −0.364 p.p. (6.2% in total), respectively. (See Appendix for a simulation during

2000-2019).

5.2 Policy implication

Global temperatures are projected to rise further in the coming decades of the 21st century.

Alarmingly, no evidence was found for any adaptation for increased hot days. Interacting

years with hot and cold days, the coefficient for hot days does not significantly improve

over time, consistent with more severer hot days.54 This paucity of adaptation is reported

in a series of prior works, including Deryugina and Hsiang (2014). This naturally raises a

normative question on the role of public intervention in this intensified harm from heat.

Heat regulation law as a place-based policy One common idea in the policy arena

is a heat regulation law, which has been implemented in a few states55, and debated for

51Increase of hot days was very modest with 0.9 days, while decrease of cold days was −4.1 days.
52Warming impact from additional hot days reaches -0.346 p.p. (13.4% of the nationwide drop) while

cooling impacts from less cold days was suppressed to +0.019 p.p.. In the same period, I compute that
climate change accounted for X% of drop in employment rate of prime-aged males.

53When the thresholds of cold days is set as 40◦F or 30◦F , counteracting effect from cold days are much
weaken and the net climate impact is even larger. I report more conservative estimates. The assessment
is robust to a series of alternative procedures across models, population weights ωg,i

R,t∗ for aggregation, and
corresponding observed data moments of LFPR. (See Appendix).

54By contrast, as cold days decreases and become less severer, the coefficient for cold days appears smaller.
55My estimates might be interpret as net of state-level regulations. Excluding the three states (accounting

for approximately X% of prime-aged male population), however, do not change the estimates.
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a federal-level implementation56. A typical policy package contains a mixture of primitive

solutions: prohibiting labor under extreme hot weathers, flexible time schedule, mandating

personal heat-protective equipments (cooling vests, or personal air fans), and frequent access

to watering and shading.

What happens when the heat regulation act is implemented in a state? Given the discus-

sion on mechanism at work, my empirical findings create policy implications at regional labor

markets. For regions where labor supply response is dominant, mandating protection would

expectedly serve to prevent further dropouts. For regions where labor demand response is

dominant, however, heat regulation law might backfire to trigger unintended consequences

of employment shrinkage; because mandating investments would facilitate heat avoidance

by labor reallocation (Ponticelli, Xu and Zeume (2023)) and/or exits of relatively smaller

businesses (Acharya, Bhardwaj and Tomunen (2023)). As exposure to climate change highly

differs across regions, and relative market force depends on differential demographic com-

position and industry mix, the regulation should be better implemented as placed-based

policies (Austin, Glaeser and Summers (2018)) rather than the federal-level. Despite the

estimated adverse wage response nationwide (in Section 3.6) and its suggestive dominance of

shrinking regional labor demand, the net benefit appears to be a pure empirical question.57

Either ex-post regional case studies or ex-ante net welfare evaluation are out of the scope of

the paper, and left for future work.

6 Concluding remark

Throughout the human history, males have enjoyed comparative advantage in working out-

doors. Exploring the secular trend of their declining labor attachment, the paper posits that

modern climate change hurt the traditional advantage of adult males. Employing a plausibly

random variation of climate change across U.S. commuting zones as a natural experiment,

the paper demonstrates that climate change impaired their labor force attachment. The de-

56Only a handful of states (e.g., California, Washington) adopt heat regulation law.
57I am not aware of experimental studies to test the impact of state-level heat regulation law or to validate

the efficacy of the countermeasures to heat.
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tachment appears to be intermediated by outdoor labor markets——seemingly an absorbing

place for unskilled workers, immune from modern technology revolution and globalization,

but unsheltered from planetary change. I find that climate change both shrink outdoor em-

ployment and wages exclusively for outdoor workers, suggesting that outdoor labor markets

is a hotbed of dropouts. The evidence for adaptation is limited. The harm is alarmingly

uneven among adult males both within- and between-regions. Because outdoor labor mar-

kets are chiefly served by noncollege workers and disadvantaged regions critically depends on

outdoor jobs, accelerating climate change would exacerbate the socio-economic inequality.
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